QPDF Manual

For QPDF Version 2.0.2, June 30, 2008
Jay Berkenbilt

QPDF Manual: For QPDF Version 2.0.2, June 30, 2008

Jay Berkenbilt
Copyright © 2005-2008 Jay Berkenbilt

Table of Contents

General INFOMMELION it ettt e e ettt e ettt e e e e et r e et e et reeeenbaneeeentaaaeees %
Lo WhEE IS QPDIF? <.ttt ettt e et et e e e et e et et et e e e e e e eean 1
2. Building and INStalling QPDIF ...ttt et 2
2.1, SyStEM REQUITEIMENTS .. eetiieeiit ettt ettt ettt e et e e et et e e et et e e et et e e et et e eeenbaes 2

2.2. BUI INSITUCTIONS ...ttt ettt et ettt ettt et et e e e aae e e eneans 2

3 RUNNING QPDF ettt ettt e e b e et et r e et e e e b e e e e 4
o B == Tol 1 0 Vo o= o o TSP TSOP PR 4

3.2, BBSIC OPIONS ...eettieeiitt ettt ettt ettt ettt ettt e s 4

3.3, ENCIYPLION OPLIONSceetieeiiti ettt ettt e et e e et e e et et e e e e et e e et et e e e eba s 4

3.4. Advanced Transformation OPLIONSc.uuuiiiiiiee ittt e e et e e e e et e e e et e e eenaaeeees 5

3.5. Testing, Inspection, and DebUgGINg OPLIONSuuiiiiiiieiiii ettt 7

A, QDF IMOOE ... ettt et a et a et et e e e e e enaas 9
5. USING the QPDF LIDIaIYoiiiiiii ettt et e e et e eenaa s 11
6. DEeSIgN @Nd Library NOESo.uiiiiiii et e et e e et e et e e e et e e e eba s 12
L0 B [L oo (8o 1o o RO PP UPPPT 12

B.2. DESIGN GOBISceeiiiiee ettt ettt 12

8.3, ENCIYPLION ..ottt ettt 14

B.4. WIItING PDF FlES ...ttt et e e 14

B.5. FIILErEO SLIEAMS ...ttt et ettt e ettt e ettt e et et e e e e a b e e e enbaeeees 15

A N 0= 4 (oo PP PP TP TOPPPTTUPPPPTN 17
7.1. Basic Strategy for LiNEAriZationveiiiiiiiiiiii et 17

7.2. Preparing FOr LINEAIZAIONcceeueieieii ettt e e e e e 17

7.3 OPLMIZALION ..ottt ettt e ettt e ettt e e et et t e et e st e e e ettt e e e eeat e e enntaeaeee 17

7.4, Writing LIiNEaIZEA FIlESuui et e e e 18

7.5. Calculating Lin@arization D Au.eeieuunieiiiiiee ettt 18

7.6. KNOWN 1SSUES With LINEAITZAIONuuiiiiiiieiiiei et et 18

7.7. DEDUGGING INOLE ...ttt et ettt e et e e e e et e e e e e e e ern s 19

8. Object and Cross-REFEIENCE SIMEAIMSuueiiiii ettt e et e et e e e et eeeana e eeees 20
8.1, ODJECE SIIBAIMS ...ttt et e et e et r e et et e e et e e e aba s 20

8.2. CrOSS-REFEIENCE SIIEAMS ... iiiiii ettt ettt ettt e et et et e e e e e e eenans 20
8.2.1. Cross-Reference SIream Dalalvvivueuiiiiiiie et 21

8.3. Implications for LiN€arized FilESociiiiiiiiiii e 21

8.4, IMPIEMENTALION NOLES ... ettt ettt e ettt e e et e e et et e e e e et e e e ente e eeenes 22

AL REIEASE NOLES ...ttt ettt e e e e s 23

General Information

QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://gpdf.gbilt.org/.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appearsin the file Artistic-2.0 in the source distribution.

QPDF was originaly created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which | am
very grateful. | have made considerable enhancementsto it since that time. | feel fortunate to have worked for people
who would make such a decision. Thiswork would not have been possible without their support.

http://qpdf.qbilt.org/
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.opensource.org/licenses/artistic-license-2.0.php
http://www.apexcovantage.com
http://www.apexcovantage.com

Chapter 1. What is QPDF?

QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

QPDF isnot aPDF content creation library, a PDF viewer, or aprogram capable of converting PDF into other formats.
In particular, QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that
can do that, you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform
that file in ways perhaps your original PDF creation can't handle. For example, programs generate smple PDF files
but can't password-protect them, web-optimize them, or perform other transformations of that type.

Chapter 2. Building and Installing
QPDF

This chapter describes how to build and install gpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements

Thegpdf package hasrelatively few external dependencies. In order to build gpdf, the following packages are required:

« zlib: http://www.zlib.net/

pcre: http://www.pcre.org/
* gnu make 3.81 or newer: http://www.gnu.org/software/make

* perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that thisis
the version of diff present on virtually all GNU/Linux systems. Thisis required because the test suite uses diff -u.

Part of gpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. Y ou can optionally disable this part of the test suite by running configur e with the --disable-test-compar e-
images flag. If you leave this enabled, the following additional requirements are required by the test suite. Note that
in no case are these items required to use gpdf.

« libtiff: http://www.remotesensing.org/libtiff/
» GhostScript version 8.60 or newer: http://pages.cs.wisc.edu/~ghost/

Thisoptionisprimarily intended for use by packagers of gpdf so that they can avoid having the gpdf packages depend
on tiff and ghostscript software.

If Adobe Reader isinstalled as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having gpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http:/
xml.apache.org/fop/) version 0.94 of higher.

2.2. Build Instructions

Building gpdf on UNIX is generally just a matter of running

./ configure
make

You can aso run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. Y ou can also set the value of DESTDIR during installation to install to atemporary

http://www.zlib.net/
http://www.pcre.org/
http://www.gnu.org/software/make
http://www.perl.org/
http://www.gnu.org/software/diffutils/
http://www.remotesensing.org/libtiff/
http://pages.cs.wisc.edu/~ghost/
http://downloads.sourceforge.net/docbook/
http://downloads.sourceforge.net/docbook/
http://xml.apache.org/fop/
http://xml.apache.org/fop/

Building and Installing QPDF

location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Thereis currently no support for building gqpdf on Windows. The code is reasonably portable, however, and making
it work on Windows would probably be reasonably straightforward. A significant amount of the code in QPDF has
been known to work on Windows in the past.

There are some other things you can do with the build. Although gpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
commentsin the top-level Makefile.

Chapter 3. Running QPDF

This chapter describes how to run the gpdf program from the command line.

3.1. Basic Invocation

When running gpdf, the basic invocation is as follows:

gpdf [options] infilenane [outfil enanme]

Thisconverts PDF fileinfilenameto PDF file outfilename. The output fileisfunctionally identical to theinput file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below.

outfilename does not have to be seekable, even when generating linearized files. Specifying “-" asoutfilename means
to write to standard output.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options

The following options are the most common ones and perform commonly needed transformations.

--passwor d=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of alinearized (web optimized) output file.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options, page 4for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on thefile. A password must be supplied if the fileis password protected.

Password-protected files may be opened by specifying a password. By default, gpdf will preserve any encryption data
associated with afile. If --decrypt is specified, gpdf will attempt to remove any encryption information. If --encrypt
is specified, gpdf will replace the document's encryption parameters with whatever is specified.

Note that gpdf does not obey encryption restrictions already imposed on thefile. Doing so would be meaningless since
gpdf can be used to remove encryption from thefile entirely. Thisfunctionality isnot intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

3.3. Encryption Options

To change the encryption parameters of afile, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions | --

Note that “--" terminates parsing of encryption flags and must be present even if no restrictions are present.

Running QPDF

Either or both of the user password and the owner password may be empty strings.

Thevalueforkey- | engt h may be40or 128. Therestriction flagsare dependent upon key length. When no additional
restrictions are given, the default isto be fully permissive.

If key- | engt h is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key- | engt h is 128, the following restriction options are available;

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=pri nt - opt
Controls printing access. pr i nt - opt may be one of the following:

o full: allow full printing
* low: allow low-resolution printing only
* none: disallow printing

--modify=nodi f y- opt
Controls modify access. nodi f y- opt may be one of the following:

+ all: alow full document modification

* annotate: alow comment authoring and form operations
o form: alow form field fill-in and signing

 assembly: allow document assembly only

* none: alow no modifications

The default for each permission option is to be fully permissive.

3.4. Advanced Transformation Options

These transformation options control fine points of how gpdf creates the output file. Mostly these are of use only to
peoplewho are very familiar with the PDFfile format or who are PDF devel opers. Thefollowing optionsare available:

--stream-data=opt i on
Controls transformation of stream data. The value of opt i on may be one of the following:

Running QPDF

e compress: recompress stream data when possible (default)
» preserve: leave al stream dataasis
* uncompress. uncompress stream data when possible

--nor malize-content=[yn]
Enables or disables normalization of content streams.

--SUpPpr ess-recovery
Prevents gpdf from attempting to recover damaged files.

--obj ect-streams=node
Controls handing of object streams. The value of mode may be one of the following:

» preserve: preserve origina object streams (default)
« disable: don't write any object streams
 generate: use object streams wherever possible

--ignor e-xr ef-streams
Tells gpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 9.

By default, when a stream is encoded using non-lossy filters that gpdf understands and is not already compressed
using agood compression scheme, gpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generaly results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=pr eserve is specified, gpdf will never attempt to change the filtering of any stream data.

When --str eam-data=uncompr ess is specified, gpdf will attempt to remove any non-lossy filtersthat it supports. This
includes/ Fl at eDecode,/ LZWDecode,/ ASCI | 85Decode, and/ ASCl | HexDecode. Thiscan be very useful
for inspecting the contents of various streams.

When --nor malize-content=y is specified, gpdf will attempt to normalize whitespace and newlines in page content
streams. Thisis generally safe but could, in some cases, cause damage to the content streams. This option isintended
for people who wish to study PDF content streams or to debug PDF content. Y ou should not use this for “ production”
PDFfiles.

Ordinarily, gpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, gpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some dataloss is possible. The --suppress-recovery option will prevent gpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. gpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and gener ate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older

Running QPDF

PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In gener ate mode, gpdf will create its own object streams. Thiswill usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid filesis to make
some content available to viewers that are not aware of cross-reference streams. It isamost never desirable to ignore
them. The only time when you might want to use thisfeatureisif you are testing creation of hybrid PDF filesand wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such afile.

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengthsare stored asindirect objects, objectsarelaid out in aless efficient but more readabl e fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF filesin a
text editor. For details, please see Chapter 4, QDF Mode, page 9.

3.5. Testing, Inspection, and Debugging
Options

These options can be useful for digging into PDF files or for usein automated test suitesfor software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of afixed valuefor /ID. Thisisintended for testing only. Never use it for production files.

-show-encryption
Shows document encryption parameters. Also showsthe document'suser password if the owner passwordisgiven.

-check-linearization
Checksfile integrity and linearization status.

-show-linearization
Checks and displays al datain the linearization hint tables.

-show-xr ef
Shows the contents of the cross-reference table in a human-readable form. Thisis especially useful for files with
cross-reference streams which are stored in a binary format.

-show-obj ect=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “ compressed objects’).

-raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

-filter ed-stream-data
When used along with the --show-obj ect option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream isfiltered using filters that qpdf does not support, an error will be issued.

Running QPDF

-show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

-with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in acomment in the source code.)

-check
Checksfile structure and well as encryption and linearization. A file for which --check reports no errors may still
have errorsin stream data but should otherwise be otherwise structurally sound.

The --raw-stream-data and --filter ed-str eam-data options are ignored unless --show-obj ect is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream datawith
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filter ed-stream-data is given and --nor malize-content=y isa so given, gpdf will attempt to normalize the stream
data asif it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusuable results.

Chapter 4. QDF Mode

In QDF mode, qpdf creates PDF filesin what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %DF- 1. O asits third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in atext editor for two reasons: most meaningful datain PDF filesis
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
fileisorganized in amanner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
gpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
apossibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:
 All objects appear in numerical order in the PDF file, including when objects appear in object streams.
» Objectsare printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

» Unless specifically overridden, streams appear uncompressed (when gpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

 All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

« If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objectsin object streams.

 All beginningsof objects, st r eamtokens, endst r eamtokens, and endobj tokensappear on linesby themselves.
A blank line follows every endobj token.

« If thereisacross-reference stream, it is unfiltered.
 Page dictionaries and page content streams are marked with special comments that make them easy to find.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
s0 long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streamsin it, you can aways add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever referencesit by number.

Itisnot generally practical to remove objectsfrom QDF files without messing up object numbering, but if you remove
all references to an object, you can run gpdf on the file (after running fix-qdf), and gpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of thefile:
» the/ N,/ Wand/ Fi r st keysof al object stream dictionaries

« the pairs of numbers representing object numbers and offsets of objectsin object streams

QDF Mode

« al stream lengths
* the cross-reference table or cross-reference stream

* the offset to the cross-reference table or cross-reference stream following the st ar t xr ef token

10

Chapter 5. Using the QPDF Library

The source tree for the gpdf package has an examples directory that contains a few example programs. The gpdf/
gpdf.cc source file also serves as a useful example since it exercises aimost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/gpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/gpdf directory. It is recommend that you use #i ncl ude <qpdf/
QPDF. hh> rather than adding include/gpdf to your include path.

When linking against the gpdf library, you may also need to specify - | pcre -1z onyour link command. If your
system understands how to read libtool .1a files, this may not be necessary.

11

Chapter 6. Design and Library Notes

6.1. Introduction

This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
aroad map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. Thislibrary attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call set Suppr essWar ni ngs(true) . If youwant to fail on the first error, you can call
set At t enpt Recover y(f al se) . Thedefault behavior isto generating warnings for recoverable problems. Note
that recovery will not always produce the desired resultseven if it isableto get through thefile. Unlike most other PDF
filesthat produce generic warnings such as“ Thisfileis damaged,”, qpdf generally issues adetailed error message that
would be most useful to a PDF developer. Thisis by design as there seems to be a shortage of PDF validation tools
out there. (Thiswas, in fact, one of the major motivations behind the initial creation of gpdf.)

6.2. Design Goals

The QPDF package includes support for reading and rewriting PDF files. It aimsto hide from the user detailsinvolving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the gpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such asfile positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by severa years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private membersthat in turn call private methods of the containing class.
See QPDFObjectHandle::Factory asan example.

The top-level gpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObiject isthe basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved viaa call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

12

Design and Library Notes

Thereis no public interface for creating instances of QPDFObjectHandle. They can be created only inside the QPDF
library. Thisis generally done through acall to the private method QPDF:: readObject which uses QPDFTokenizer
to read an indirect object at a given file position and return a QPDFObjectHandle that encapsulates it. There are
also internal methods to create fabricated indirect objects from existing direct objects or to change an indirect object
into a direct object, though these steps are not performed except to support rewriting.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file podition. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objectsuntil it findsabalancing closer. During this process, the“ R’ keyword isrecognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it readsthe
object from the PDF file and cachesiit. It the returns the resulting QPDFObjectHandle. The calling object handle
then replacesitsPointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. Inthis
way, only asingle copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they aredirect or indirect objects. Additionally, no object isever read from thefile more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the gpdf package to take advantage of thisimportant design goal of PDF files.

If the requested object isinside of an object stream, the object stream itself isfirst read into memory. Then thetokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF:: processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output fileswritten by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only thefirst trailer dictionary
though it does read all of them so it can check the / Pr ev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by humber
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such aswalking the page tree and returning avector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes asimplefile.
* Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

* The QPDF class checks the beginning of a.pdf for %8 PDF- 1. [0- 9] +. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last 994&CF. After getting to trai | er
keyword, it invokes the parser.

Las pointed out earlier, the intention is not for gpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and gpdf offers may transformations that can do this as well, there seemsto be little point in the
added complexity of conditionally enforcing document security.

13

Design and Library Notes

e Theparser sees“<<”, so0it callsitself recursively in dictionary creation mode.

* In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>". Each object that is
read is pushed onto a stack. If “R’ is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>" is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

» Theresulting dictionary is saved as the trailer dictionary.

* The/ Pr ev key is searched. If present, QPDF seeksto that point and repeats except that the new trailer dictionary
isnot saved. If / Pr ev isnot present, theinitial parsing processis complete.

If thereis an encryption dictionary, the document's encryption parameters are initialized.

* The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returnsit. It
isan unresolved indirect QPDFObjectHandle.

* The client requests the / Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
isindirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it avalid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

Asthe client continues to request objects, the same processis followed for each new requested object.

6.3. Encryption

Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object isread from afile, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. Thisway, nothing in the library ever has to know or care whether it is reading an encrypted file.

An interface is aso provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

6.4. Writing PDF Files

Theqgpdf library supportsfilewriting of QPDF objectsto PDF filesthrough the QPDFWriter class. The QPDFWriter
classhastwo writing modes: onefor non-linearized files, and onefor linearized files. See Chapter 7, Linearization, page
17 for a description of linearization is implemented. This section describes how we write non-linearized files
including the creation of QDF files (see Chapter 4, QDF Mode, page 9.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the codein QPDFWriter for exact details.

* [|nitidize state:

e next object number =1

14

Design and Library Notes

object queue = empty
renumber table: old object id/generation to new id/0 = empty

xref table: new id -> offset = empty

 Create a QPDF object from afile.

» Write header for new PDF file.

* Reguest the trailer dictionary.

 For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

» While there are more objects on the queue:

Pop queue.

Look up object's new number n in the renumbering table.

Store current offset into xref table.

Writen 0 obj .

If object isnull, whether direct or indirect, write out null, thus eliminating unresolvabl e indirect object references.

If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

If object is not a stream, array, or dictionary, write out its contents.

If object isan array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object isfound, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. Asa special case, when writing out a stream dictionary, replacelength,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

If the objectisastream, writest r eam n, the stream contents (from the memory buffer), and\ nendst r eam n.

When done, write endobj .

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /1D (see spec, 8.3, File Identifiers), the cross reference
table offset, and Y9&ECF.

6.5. Filtered Streams

Support for streams isimplemented through the Pipeline interface which was designed for this package.

15

Design and Library Notes

When reading streams, create aseriesof Pipeline objects. The Pipeline abstract base requiresimplementation write()
and finish() and provides an implementation of getNext(). Each pipeline abject, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading afiltered stream, the QPDF class createsaPipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
isrequired. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

16

Chapter 7. Linearization

This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization

To avoid theincestuous problem of having the gpdf library validateitsown linearized files, we have aspecial linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization

Before creating alinearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the / Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 17. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is aterm from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only afew issues that need to be dealt
with:

* Creation of hintstables
 Placing objects in the correct order

* Filling in offsets and byte sizes

7.3. Optimization

In order to perform various operations such aslinearization and splitting filesinto pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is aso necessary to
ensurethat all page-level attributes appear directly at the pagelevel and are not inherited from parentsin the pagestree.

Werefer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although thisoptimization wasinitially motivated by the need to createlinearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variablesobj_user to_objectsand object_to _obj usersin
QPDF have been populated. Any object that has more than one value in the object_to_obj userstableis shared. Any
object that has exactly onevalueinthe object_to_obj userstableis private. To find al the private objectsin a page or
atrailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

17

Linearization

7.4. Writing Linearized Files

Wewill createfileswith only primary hint streams. Wewill never write overflow hint streams. (Asof PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
thisreliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipelineis a count pipeline chained to a discard pipeline. The count pipeline simply passes
itsdatathrough to the next pipeline in the chain but can return the number of bytes passed throughiit at any intermediate
point. The discard pipeline isan end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second passis stored.

At the end of the first pass, thisinformation is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipelinechainisaregular fileinstead of adiscard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsetsthat appear after the start of
the hint stream by the length of the hint stream, which isknown. Anything that is of variablelength is padded, with the
padding code surrounding any writing code that differsin the two passes. This ensures that changes to the way things
arerepresented never resultsin offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data

Once afileis optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were abug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization

There are ahandful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for aweb browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

» Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionaly.

» We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

» Wegenerate only page offset, shared object, and outline hint tables. It would berel atively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

18

Linearization

7.7. Debugging Note

The gpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using gpdf --show-object=n --filter ed-
stream-data. Then, to convert thisinto a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;

bi nnrbde STDI N;

undef $/;

ny $a = <STDI N>;

ny @h = split(//, $a);

map { printf("%8b", ord($)) } @h;
print "\n";

19

Chapter 8. Object and Cross-Reference
Streams

This chapter provides information about the implementation of object stream and cross-reference stream support in
gpdf.

8.1. Object Streams

Object streams can contain any regular object except the following:
* stream objects

« objects with generation > 0

* the encryption dictionary

* objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catal og
appear in an object stream if the file is encrypted, though thisis not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files’page 2%or
details.

The PDF specification refers to objects in object streams as “compressed objects’ regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with aregular object.

The object stream dictionary has the following keys:

e / N: number of objects

» / First: byte offset of first object

» / Ext ends: indirect reference to stream that this extends

Stream collections are formed with / Ext ends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although gpdf preserves
stream collections, it never generates them and doesn't make use of thisinformation in any way.

The specification recommends limiting the number of objectsin object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than objects per object stream for linearized files and no more 200 objects per stream for non-
linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objectsin an object stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams

For non-hybrid files, thevaluefollowing st ar t xr ef isthe byte offset to the xref stream rather than theword xr ef .

20

Object and Cross-Reference Streams

For hybridfiles (files containing both xref tablesand cross-reference streams), the xref table'strailer dictionary contains
the key / XRef St mwhose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any / Pr ev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a/ Pr ev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding / XRef St mpointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRef St m The appended xref tablewould point to the previous xref table which would point the/ XRef St m meaning
that the new / XRef St mdoesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

» [Type: value/ XRef

e / Si ze: valuen+1: where nis highest object number (sameas/ Si ze inthetrailer dictionary)

/ 1 ndex (optional): value[n count .. .] usedto determinewhich objects informationis stored in this stream.
Thedefaultis[0 / Si ze] .

» / Prev:vaueof f set : byte offset of previous xref stream (sameas/ Pr ev in the trailer dictionary)
* /W][...]:sizesof eachfieldinthe xref table

The other fieldsin the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data

The stream datais binary and encoded in big-endian byte order. Entries are concatenated, and each entry has alength
equal to thetotal of the entriesin/ Wabove. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by / Wabove. A 0 in/ Windicates that the field is omitted and
has the default value. The default value for the field typeis“1”. All other default valuesare “0”.

PDF 1.5 hasthree field types:
» 0O:forfreeobjects. Format: 0 obj next - gener at i on, sameasthefreetablein atraditional cross-referencetable
* 1: regular non-compressed object. Format: 1 of f set generati on

» 2: for objects in object streams. Format: 2 obj ect - st r eam nunber i ndex, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have thefirst entry inthetablebeO0 0 Oinsteadof 0 O ffff if thereare no deleted objects.

8.3. Implications for Linearized Files

For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streamsin place of regular xref tables. There are on special considerations.

21

Object and Cross-Reference Streams

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes

Therearethree modesfor writing object streams: disable, preser ve, and gener ate. In disable mode, wedo not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
filesthat are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objectsand / Ext ends relationships asin the original file. Thisisequal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF versionis at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

22

Appendix A. Release Notes

2.0.2: June 30, 2008

» Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual gpdf source code itself for this release.

2.0.1: May 6, 2008

» No changes in functionality or interface. This release includes fixes to the source code so that gpdf compiles
properly and passes its test suite on a broader range of platforms. See Changel.og in the source distribution
for details.

2.0: April 29, 2008

* First public release.

23

