|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.filters.Filter
weka.filters.SimpleFilter
weka.filters.SimpleBatchFilter
weka.filters.supervised.attribute.PLSFilter
public class PLSFilter
Runs Partial Least Square Regression over the given instances and computes the resulting beta matrix for prediction.
By default it replaces missing values and centers the data.
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002). A User Friendly Guide to Multivariate Calibration and Classification. NIR Publications.
StatSoft, Inc.. Partial Least Squares (PLS).
Bent Jorgensen, Yuri Goegebeur. Module 7: Partial least squares regression I.
S. de Jong (1993). SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems. 18:251-263.
@book{Naes2002, author = {Tormod Naes and Tomas Isaksson and Tom Fearn and Tony Davies}, publisher = {NIR Publications}, title = {A User Friendly Guide to Multivariate Calibration and Classification}, year = {2002}, ISBN = {0-9528666-2-5} } @misc{missing_id, author = {StatSoft, Inc.}, booktitle = {Electronic Textbook StatSoft}, title = {Partial Least Squares (PLS)}, HTTP = {http://www.statsoft.com/textbook/stpls.html} } @misc{missing_id, author = {Bent Jorgensen and Yuri Goegebeur}, booktitle = {ST02: Multivariate Data Analysis and Chemometrics}, title = {Module 7: Partial least squares regression I}, HTTP = {http://statmaster.sdu.dk/courses/ST02/module07/} } @article{Jong1993, author = {S. de Jong}, journal = {Chemometrics and Intelligent Laboratory Systems}, pages = {251-263}, title = {SIMPLS: an alternative approach to partial least squares regression}, volume = {18}, year = {1993} }Valid options are:
-D Turns on output of debugging information.
-C <num> The number of components to compute. (default: 20)
-U Updates the class attribute as well. (default: off)
-M Turns replacing of missing values on. (default: off)
-A <SIMPLS|PLS1> The algorithm to use. (default: PLS1)
-P <none|center|standardize> The type of preprocessing that is applied to the data. (default: center)
Field Summary | |
---|---|
static int |
ALGORITHM_PLS1
the type of algorithm: PLS1 |
static int |
ALGORITHM_SIMPLS
the type of algorithm: SIMPLS |
static int |
PREPROCESSING_CENTER
the type of preprocessing: Center |
static int |
PREPROCESSING_NONE
the type of preprocessing: None |
static int |
PREPROCESSING_STANDARDIZE
the type of preprocessing: Standardize |
static Tag[] |
TAGS_ALGORITHM
the types of algorithm |
static Tag[] |
TAGS_PREPROCESSING
the types of preprocessing |
Constructor Summary | |
---|---|
PLSFilter()
default constructor |
Method Summary | |
---|---|
java.lang.String |
algorithmTipText()
Returns the tip text for this property |
SelectedTag |
getAlgorithm()
Gets the type of algorithm to use |
Capabilities |
getCapabilities()
Returns the Capabilities of this filter. |
int |
getNumComponents()
returns the maximum number of attributes to use. |
java.lang.String[] |
getOptions()
returns the options of the current setup |
boolean |
getPerformPrediction()
Gets whether the class attribute is updated with the predicted value. |
SelectedTag |
getPreprocessing()
Gets the type of preprocessing to use |
boolean |
getReplaceMissing()
Gets whether missing values are replace. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
java.lang.String |
globalInfo()
Returns a string describing this classifier. |
java.util.Enumeration |
listOptions()
Gets an enumeration describing the available options. |
static void |
main(java.lang.String[] args)
runs the filter with the given arguments |
java.lang.String |
numComponentsTipText()
Returns the tip text for this property |
java.lang.String |
performPredictionTipText()
Returns the tip text for this property |
java.lang.String |
preprocessingTipText()
Returns the tip text for this property |
java.lang.String |
replaceMissingTipText()
Returns the tip text for this property |
void |
setAlgorithm(SelectedTag value)
Sets the type of algorithm to use |
void |
setNumComponents(int value)
sets the maximum number of attributes to use. |
void |
setOptions(java.lang.String[] options)
Parses the options for this object. |
void |
setPerformPrediction(boolean value)
Sets whether to update the class attribute with the predicted value. |
void |
setPreprocessing(SelectedTag value)
Sets the type of preprocessing to use |
void |
setReplaceMissing(boolean value)
Sets whether to replace missing values. |
Methods inherited from class weka.filters.SimpleBatchFilter |
---|
batchFinished, input |
Methods inherited from class weka.filters.SimpleFilter |
---|
debugTipText, getDebug, setDebug, setInputFormat |
Methods inherited from class weka.filters.Filter |
---|
batchFilterFile, filterFile, getCapabilities, getOutputFormat, isFirstBatchDone, isNewBatch, isOutputFormatDefined, makeCopies, makeCopy, numPendingOutput, output, outputPeek, toString, useFilter, wekaStaticWrapper |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
public static final int ALGORITHM_SIMPLS
public static final int ALGORITHM_PLS1
public static final Tag[] TAGS_ALGORITHM
public static final int PREPROCESSING_NONE
public static final int PREPROCESSING_CENTER
public static final int PREPROCESSING_STANDARDIZE
public static final Tag[] TAGS_PREPROCESSING
Constructor Detail |
---|
public PLSFilter()
Method Detail |
---|
public java.lang.String globalInfo()
globalInfo
in class SimpleFilter
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class SimpleFilter
public java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class SimpleFilter
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D Turns on output of debugging information.
-C <num> The number of components to compute. (default: 20)
-U Updates the class attribute as well. (default: off)
-M Turns replacing of missing values on. (default: off)
-A <SIMPLS|PLS1> The algorithm to use. (default: PLS1)
-P <none|center|standardize> The type of preprocessing that is applied to the data. (default: center)
setOptions
in interface OptionHandler
setOptions
in class SimpleFilter
options
- the options to use
java.lang.Exception
- if the option setting failsSimpleFilter.reset()
public java.lang.String numComponentsTipText()
public void setNumComponents(int value)
value
- the maximum number of attributespublic int getNumComponents()
public java.lang.String performPredictionTipText()
public void setPerformPrediction(boolean value)
value
- if true the class value will be replaced by the
predicted value.public boolean getPerformPrediction()
public java.lang.String algorithmTipText()
public void setAlgorithm(SelectedTag value)
value
- the algorithm typepublic SelectedTag getAlgorithm()
public java.lang.String replaceMissingTipText()
public void setReplaceMissing(boolean value)
value
- if true missing values are replaced with the
ReplaceMissingValues filter.public boolean getReplaceMissing()
public java.lang.String preprocessingTipText()
public void setPreprocessing(SelectedTag value)
value
- the preprocessing typepublic SelectedTag getPreprocessing()
public Capabilities getCapabilities()
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class Filter
Capabilities
public static void main(java.lang.String[] args)
args
- the commandline arguments
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |