
Bayesian Network Classifiers in Weka

for Version 3-5-7

Remco R. Bouckaert

remco@cs.waikato.ac.nz

February 25, 2008

c©2006-2007 University of Waikato



Abstract

Various Bayesian network classifier learning algorithms are implemented
in Weka [10]. This note provides some user documentation and implemen-
tation details.

Summary of main capabilities:

• Structure learning of Bayesian networks using various hill climbing
(K2, B, etc) and general purpose (simulated annealing, tabu search)
algorithms.

• Local score metrics implemented; Bayes, BDe, MDL, entropy, AIC.

• Global score metrics implemented; leave one out cv, k-fold cv and
cumulative cv.

• Conditional independence based causal recovery algorithm available.

• Parameter estimation using direct estimates and Bayesian model
averaging.

• GUI for easy inspection of Bayesian networks.

• Part of Weka allowing systematic experiments to compare Bayes
net performance with general purpose classifiers like C4.5, nearest
neighbor, support vector, etc.

• Source code available under GPL1 allows for integration in other
open-source systems and makes it easy to extend.

1GPL: GNU General Public License. For more information see the GNU homepage
http://www.gnu.org/copyleft/gpl.html.

1



Contents

1 Introduction 3

2 Local score based structure learning 6

3 Conditional independence test based structure learning 11

4 Global score metric based structure learning 13

5 Fixed structure ’learning’ 14

6 Distribution learning 14

7 Running from the command line 16

8 Inspecting Bayesian networks 26

9 Bayesian nets in the experimenter 29

10 Adding your own Bayesian network learners 30

11 FAQ 31

12 Future development 33

2



1 Introduction

Let U = {x1, . . . , xn}, n ≥ 1 be a set of variables. A Bayesian network B
over a set of variables U is a network structure BS , which is a directed acyclic
graph (DAG) over U and a set of probability tables BP = {p(u|pa(u))|u ∈ U}
where pa(u) is the set of parents of u in BS . A Bayesian network represents a
probability distributions P (U) =

∏
u∈U p(u|pa(u)).

Below, a Bayesian network is shown for the variables in the iris data set.
Note that the links between the nodes class, petallength and petalwidth do not
form a directed cycle, so the graph is a proper DAG.

This picture just shows the network structure of the Bayes net, but for each
of the nodes a probability distribution for the node given its parents are specified
as well. For example, in the Bayes net above there is a conditional distribution
for petallength given the value of class. Since class has no parents, there is an
unconditional distribution for sepalwidth.

Basic assumptions

The classification task consist of classifying a variable y = x0 called the class
variable given a set of variables x = x1 . . . xn, called attribute variables. A
classifier h : x → y is a function that maps an instance of x to a value of y.
The classifier is learned from a dataset D consisting of samples over (x, y). The
learning task consists of finding an appropriate Bayesian network given a data
set D over U .

All Bayes network algorithms implemented in Weka assume the following for
the data set:

• all variables are discrete finite variables. If you have a data set with
continuous variables, you can use the following filter to discretize them:
weka.filters.unsupervised.attribute.Discretize

3



• no instances have missing values. If there are missing values in the data
set, values are filled in using the following filter:
weka.filters.unsupervised.attribute.ReplaceMissingValues

The first step performed by buildClassifier is checking if the data set
fulfills those assumptions. If those assumptions are not met, the data set is
automatically filtered and a warning is written to STDERR.2

Inference algorithm

To use a Bayesian network as a classifier, one simply calculates argmaxyP (y|x)
using the distribution P (U) represented by the Bayesian network. Now note
that

P (y|x) = P (U)/P (x)

∝ P (U)

=
∏

u∈U

p(u|pa(u)) (1)

And since all variables in x are known, we do not need complicated inference
algorithms, but just calculate (1) for all class values.

Learning algorithms

The dual nature of a Bayesian network makes learning a Bayesian network as a
two stage process a natural division: first learn a network structure, then learn
the probability tables.

There are various approaches to structure learning and in Weka, the following
areas are distinguished:

• local score metrics: Learning a network structure BS can be considered
an optimization problem where a quality measure of a network structure
given the training data Q(BS |D) needs to be maximized. The quality mea-
sure can be based on a Bayesian approach, minimum description length,
information and other criteria. Those metrics have the practical property
that the score of the whole network can be decomposed as the sum (or
product) of the score of the individual nodes. This allows for local scoring
and thus local search methods.

• conditional independence tests: These methods mainly stem from the goal
of uncovering causal structure. The assumption is that there is a network
structure that exactly represents the independencies in the distribution
that generated the data. Then it follows that if a (conditional) indepen-
dency can be identified in the data between two variables that there is no
arrow between those two variables. Once locations of edges are identified,
the direction of the edges is assigned such that conditional independencies
in the data are properly represented.

2If there are missing values in the test data, but not in the training data, the values are
filled in in the test data with a ReplaceMissingValues filter based on the training data.

4



• global score metrics: A natural way to measure how well a Bayesian net-
work performs on a given data set is to predict its future performance
by estimating expected utilities, such as classification accuracy. Cross-
validation provides an out of sample evaluation method to facilitate this
by repeatedly splitting the data in training and validation sets. A Bayesian
network structure can be evaluated by estimating the network’s param-
eters from the training set and the resulting Bayesian network’s perfor-
mance determined against the validation set. The average performance
of the Bayesian network over the validation sets provides a metric for the
quality of the network.

Cross-validation differs from local scoring metrics in that the quality of a
network structure often cannot be decomposed in the scores of the indi-
vidual nodes. So, the whole network needs to be considered in order to
determine the score.

• fixed structure: Finally, there are a few methods so that a structure can
be fixed, for example, by reading it from an XML BIF file3.

For each of these areas, different search algorithms are implemented in Weka,
such as hill climbing, simulated annealing and tabu search.

Once a good network structure is identified, the conditional probability ta-
bles for each of the variables can be estimated.

You can select a Bayes net classifier by clicking the classifier ’Choose’ button
in the Weka explorer, experimenter or knowledge flow and find BayesNet under
the weka.classifiers.bayes package (see below).

The Bayes net classifier has the following options:

3See http://www-2.cs.cmu.edu/˜fgcozman/Research/InterchangeFormat/ for details on XML
BIF.

5



The BIFFile option can be used to specify a Bayes network stored in file in
BIF format. When the toString() method is called after learning the Bayes
network, extra statistics (like extra and missing arcs) are printed comparing the
network learned with the one on file.

The searchAlgorithm option can be used to select a structure learning
algorithm and specify its options.

The estimator option can be used to select the method for estimating the
conditional probability distributions (Section 6).

When setting the useADTree option to true, counts are calculated using the
ADTree algorithm of Moore [8]. Since I have not noticed a lot of improvement for
small data sets, it is set off by default. Note that this ADTree algorithm is differ-
ent from the ADTree classifier algorithm from weka.classifiers.tree.ADTree.

The debug option has no effect.

2 Local score based structure learning

Distinguish score metrics (Section 2.1) and search algorithms (Section 2.2). A
local score based structure learning can be selected by choosing one in the
weka.classifiers.bayes.net.search.local package.

6



Local score based algorithms have the following options in common:
initAsNaiveBayes if set true (default), the initial network structure used for
starting the traversal of the search space is a naive Bayes network structure.
That is, a structure with arrows from the class variable to each of the attribute
variables.
If set false, an empty network structure will be used (i.e., no arrows at all).
markovBlanketClassifier (false by default) if set true, at the end of the
traversal of the search space, a heuristic is used to ensure each of the attributes
are in the Markov blanket of the classifier node. If a node is already in the
Markov blanket (i.e., is a parent, child of sibling of the classifier node) nothing
happens, otherwise an arrow is added.
If set to false no such arrows are added.
scoreType determines the score metric used (see Section 2.1 for details). Cur-
rently, K2, BDe, AIC, Entropy and MDL are implemented.
maxNrOfParents is an upper bound on the number of parents of each of the
nodes in the network structure learned.

2.1 Local score metrics

We use the following conventions to identify counts in the database D and a
network structure BS . Let ri (1 ≤ i ≤ n) be the cardinality of xi. We use qi

to denote the cardinality of the parent set of xi in BS , that is, the number of
different values to which the parents of xi can be instantiated. So, qi can be
calculated as the product of cardinalities of nodes in pa(xi), qi =

∏
xj∈pa(xi)

rj .

Note pa(xi) = ∅ implies qi = 1. We use Nij (1 ≤ i ≤ n, 1 ≤ j ≤ qi) to denote
the number of records in D for which pa(xi) takes its jth value.We use Nijk

(1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) to denote the number of records in D
for which pa(xi) takes its jth value and for which xi takes its kth value. So,
Nij =

∑ri

k=1 Nijk. We use N to denote the number of records in D.

7



Let the entropy metric H(BS ,D) of a network structure and database be
defined as

H(BS ,D) = −N

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk

N
log

Nijk

Nij

(2)

and the number of parameters K as

K =

n∑

i=1

(ri − 1) · qi (3)

AIC metric The AIC metric QAIC(BS ,D) of a Bayesian network structure
BS for a database D is

QAIC(BS ,D) = H(BS ,D) + K (4)

A term P (BS) can be added [1] representing prior information over network
structures, but will be ignored for simplicity in the Weka implementation.

MDL metric The minimum description length metric QMDL(BS ,D) of a
Bayesian network structure BS for a database D is is defined as

QMDL(BS ,D) = H(BS ,D) +
K

2
log N (5)

Bayesian metric The Bayesian metric of a Bayesian network structure BD

for a database D is

QBayes(BS ,D) = P (BS)

n∏

i=0

qi∏

j=1

Γ(N ′

ij)

Γ(N ′

ij + Nij)

ri∏

k=1

Γ(N ′

ijk + Nijk)

Γ(N ′

ijk)

where P (BS) is the prior on the network structure (taken to be constant hence
ignored in the Weka implementation) and Γ(.) the gamma-function. N ′

ij and

N ′

ijk represent choices of priors on counts restricted by N ′

ij =
∑ri

k=1 N ′

ijk. With
N ′

ijk = 1 (and thus N ′

ij = ri), we obtain the K2 metric [5]

QK2(BS ,D) = P (BS)

n∏

i=0

qi∏

j=1

(ri − 1)!

(ri − 1 + Nij)!

ri∏

k=1

Nijk!

With N ′

ijk = 1/ri · qi (and thus N ′

ij = 1/qi), we obtain the BDe metric [7].

2.2 Search algorithms

The following search algorithms are implemented for local score metrics;

• K2 [5]: hill climbing add arcs with a fixed ordering of variables.
Specific option: randomOrder if true a random ordering of the nodes is
made at the beginning of the search. If false (default) the ordering in the
data set is used. The only exception in both cases is that in case the initial
network is a naive Bayes network (initAsNaiveBayes set true) the class
variable is made first in the ordering.

• Hill Climbing [2]: hill climbing adding and deleting arcs with no fixed
ordering of variables.
useArcReversal if true, also arc reversals are consider when determining
the next step to make.

8



• Repeated Hill Climber starts with a randomly generated network and then
applies hill climber to reach a local optimum. The best network found is
returned.
useArcReversal option as for Hill Climber.

• LAGD Hill Climbing does hill climbing with look ahead on a limited set
of best scoring steps, implemented by Manuel Neubach. The number
of look ahead steps and number of steps considered for look ahead are
configurable.

• TAN [3, 6]: T ree Augmented N aive Bayes where the tree is formed by
calculating the maximum weight spanning tree using Chow and Liu algo-
rithm [4].
No specific options.

• Simulated annealing [1]: using adding and deleting arrows.
The algorithm randomly generates a candidate network B′

S close to the
current network BS . It accepts the network if it is better than the current,
i.e., Q(B′

S ,D) > Q(BS ,D). Otherwise, it accepts the candidate with
probability

eti·(Q(B′

S ,D)−Q(BS ,D))

where ti is the temperature at iteration i. The temperature starts at t0
and is slowly decreases with each iteration.

Specific options:
TStart start temperature t0.
delta is the factor δ used to update the temperature, so ti+1 = ti · δ.
runs number of iterations used to traverse the search space.
seed is the initialization value for the random number generator.

• Tabu search [1]: using adding and deleting arrows.
Tabu search performs hill climbing until it hits a local optimum. Then it
steps to the least worse candidate in the neighborhood. However, it does
not consider points in the neighborhood it just visited in the last tl steps.
These steps are stored in a so called tabu-list.

9



Specific options:
runs is the number of iterations used to traverse the search space.
tabuList is the length tl of the tabu list.

• Genetic search: applies a simple implementation of a genetic search algo-
rithm to network structure learning. A Bayes net structure is represented
by a array of n ·n (n = number of nodes) bits where bit i ·n+ j represents
whether there is an arrow from node j → i.

Specific options:
populationSize is the size of the population selected in each generation.
descendantPopulationSize is the number of offspring generated in each
generation.
runs is the number of generation to generate.
seed is the initialization value for the random number generator.
useMutation flag to indicate whether mutation should be used. Mutation

10



is applied by randomly adding or deleting a single arc.
useCrossOver flag to indicate whether cross-over should be used. Cross-
over is applied by randomly picking an index k in the bit representation
and selecting the first k bits from one and the remainder from another
network structure in the population. At least one of useMutation and
useCrossOver should be set to true.
useTournamentSelection when false, the best performing networks are
selected from the descendant population to form the population of the
next generation. When true, tournament selection is used. Tournament
selection randomly chooses two individuals from the descendant popula-
tion and selects the one that performs best.

3 Conditional independence test based structure

learning

Conditional independence tests in Weka are slightly different from the standard
tests described in the literature. To test whether variables x and y are condi-
tionally independent given a set of variables Z, a network structure with arrows
∀z∈Zz → y is compared with one with arrows {x → y} ∪ ∀z∈Zz → y. A test is
performed by using any of the score metrics described in Section 2.1.

At the moment, only the ICS [9]and CI algorithm are implemented.
The ICS algorithm makes two steps, first find a skeleton (the undirected

graph with edges iff there is an arrow in network structure) and second direct
all the edges in the skeleton to get a DAG.

Starting with a complete undirected graph, we try to find conditional inde-
pendencies 〈x, y|Z〉 in the data. For each pair of nodes x, y, we consider sets

11



Z starting with cardinality 0, then 1 up to a user defined maximum. Further-
more, the set Z is a subset of nodes that are neighbors of both x and y. If
an independency is identified, the edge between x and y is removed from the
skeleton.

The first step in directing arrows is to check for every configuration x−−z−
−y where x and y not connected in the skeleton whether z is in the set Z of
variables that justified removing the link between x and y (cached in the first
step). If z is not in Z, we can assign direction x→ z ← y.

Finally, a set of graphical rules is applied [9] to direct the remaining arrows.

Rule 1: i->j--k & i-/-k => j->k

Rule 2: i->j->k & i--k => i->k

Rule 3 m

/|\

i | k => m->j

i->j<-k \|/

j

Rule 4 m

/ \

i---k => i->m & k->m

i->j \ /

j

Rule 5: if no edges are directed then take a random one (first we can find)

The ICS algorithm comes with the following options.

Since the ICS algorithm is focused on recovering causal structure, instead
of finding the optimal classifier, the Markov blanket correction can be made
afterwards.

Specific options:
The maxCardinality option determines the largest subset of Z to be considered
in conditional independence tests 〈x, y|Z〉.
The scoreType option is used to select the scoring metric.

12



4 Global score metric based structure learning

Common options for cross-validation based algorithms are:
initAsNaiveBayes, markovBlanketClassifier and maxNrOfParents (see Sec-
tion 2 for description).

Further, for each of the cross-validation based algorithms the CVType can be
chosen out of the following:

• Leave one out cross-validation (loo-cv) selects m = N training sets simply
by taking the data set D and removing the ith record for training set Dt

i .
The validation set consist of just the ith single record. Loo-cv does not
always produce accurate performance estimates.

• K-fold cross-validation (k-fold cv) splits the data D in m approximately
equal parts D1, . . . ,Dm. Training set Dt

i is obtained by removing part
Di from D. Typical values for m are 5, 10 and 20. With m = N , k-fold
cross-validation becomes loo-cv.

• Cumulative cross-validation (cumulative cv) starts with an empty data set
and adds instances item by item from D. After each time an item is added
the next item to be added is classified using the then current state of the
Bayes network.

Finally, the useProb flag indicates whether the accuracy of the classifier
should be estimated using the zero-one loss (if set to false) or using the esti-
mated probability of the class.

13



The following search algorithms are implemented: K2, HillClimbing, Repeat-
edHillClimber, TAN, Tabu Search, Simulated Annealing and Genetic Search.
See Section 2 for a description of the specific options for those algorithms.

5 Fixed structure ’learning’

The structure learning step can be skipped by selecting a fixed network struc-
ture. There are two methods of getting a fixed structure: just make it a naive
Bayes network, or reading it from a file in XML BIF format.

6 Distribution learning

Once the network structure is learned, you can choose how to learn the prob-
ability tables selecting a class in the weka.classifiers.bayes.net.estimate

14



package.

The SimpleEstimator class produces direct estimates of the conditional
probabilities, that is,

P (xi = k|pa(xi) = j) =
Nijk + N ′

ijk

Nij + N ′

ij

where N ′

ijk is the alpha parameter that can be set and is 0.5 by default. With
alpha = 0, we get maximum likelihood estimates.

With the BMAEstimator, we get estimates for the conditional probability
tables based on Bayes model averaging of all network structures that are sub-
structures of the network structure learned [1]. This is achieved by estimat-
ing the conditional probability table of a node xi given its parents pa(xi) as
a weighted average of all conditional probability tables of xi given subsets of
pa(xi). The weight of a distribution P (xi|S) with S ⊆ pa(xi) used is propor-
tional to the contribution of network structure ∀y∈Sy → xi to either the BDe
metric or K2 metric depending on the setting of the useK2Prior option (false
and true respectively).

15



7 Running from the command line

These are the command line options of BayesNet.

General options:

-t <name of training file>

Sets training file.

-T <name of test file>

Sets test file. If missing, a cross-validation will be performed on the

training data.

-c <class index>

Sets index of class attribute (default: last).

-x <number of folds>

Sets number of folds for cross-validation (default: 10).

-no-cv

Do not perform any cross validation.

-split-percentage <percentage>

Sets the percentage for the train/test set split, e.g., 66.

-preserve-order

Preserves the order in the percentage split.

-s <random number seed>

Sets random number seed for cross-validation or percentage split

(default: 1).

-m <name of file with cost matrix>

Sets file with cost matrix.

-l <name of input file>

Sets model input file. In case the filename ends with ’.xml’,

the options are loaded from the XML file.

-d <name of output file>

Sets model output file. In case the filename ends with ’.xml’,

only the options are saved to the XML file, not the model.

-v

Outputs no statistics for training data.

-o

Outputs statistics only, not the classifier.

-i

Outputs detailed information-retrieval statistics for each class.

-k

16



Outputs information-theoretic statistics.

-p <attribute range>

Only outputs predictions for test instances (or the train

instances if no test instances provided), along with attributes

(0 for none).

-distribution

Outputs the distribution instead of only the prediction

in conjunction with the ’-p’ option (only nominal classes).

-r

Only outputs cumulative margin distribution.

-g

Only outputs the graph representation of the classifier.

-xml filename | xml-string

Retrieves the options from the XML-data instead of the command line.

Options specific to weka.classifiers.bayes.BayesNet:

-D

Do not use ADTree data structure

-B <BIF file>

BIF file to compare with

-Q weka.classifiers.bayes.net.search.SearchAlgorithm

Search algorithm

-E weka.classifiers.bayes.net.estimate.SimpleEstimator

Estimator algorithm

The search algorithm option -Q and estimator option -E options are manda-
tory.

Note that it is important that the -E options should be used after the -Q
option. Extra options can be passed to the search algorithm and the estimator
after the class name specified following ’--’.
For example:

java weka.classifiers.bayes.BayesNet -t iris.arff -D \

-Q weka.classifiers.bayes.net.search.local.K2 -- -P 2 -S ENTROPY \

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 1.0

Overview of options for search algorithms

• weka.classifiers.bayes.net.search.local.GeneticSearch

-L <integer>

Population size

-A <integer>

Descendant population size

-U <integer>

Number of runs

-M

Use mutation.

17



(default true)

-C

Use cross-over.

(default true)

-O

Use tournament selection (true) or maximum subpopulatin (false).

(default false)

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.HillClimber

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.K2

-N

Initial structure is empty (instead of Naive Bayes)

-P <nr of parents>

Maximum number of parents

-R

Random order.

(default false)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

18



-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.LAGDHillClimber

-L <nr of look ahead steps>

Look Ahead Depth

-G <nr of good operations>

Nr of Good Operations

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.RepeatedHillClimber

-U <integer>

Number of runs

-A <seed>

Random number seed

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.SimulatedAnnealing

19



-A <float>

Start temperature

-U <integer>

Number of runs

-D <float>

Delta temperature

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TabuSearch

-L <integer>

Tabu list length

-U <integer>

Number of runs

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.local.TAN

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

20



classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.CISearchAlgorithm

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm

-cardinality <num>

When determining whether an edge exists a search is performed

for a set Z that separates the nodes. MaxCardinality determines

the maximum size of the set Z. This greatly influences the

length of the search. (default 2)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]

Score type (BAYES, BDeu, MDL, ENTROPY and AIC)

• weka.classifiers.bayes.net.search.global.GeneticSearch

-L <integer>

Population size

-A <integer>

Descendant population size

-U <integer>

Number of runs

-M

Use mutation.

(default true)

-C

Use cross-over.

(default true)

-O

Use tournament selection (true) or maximum subpopulatin (false).

(default false)

-R <seed>

21



Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.HillClimber

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.K2

-N

Initial structure is empty (instead of Naive Bayes)

-P <nr of parents>

Maximum number of parents

-R

Random order.

(default false)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

22



-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.RepeatedHillClimber

-U <integer>

Number of runs

-A <seed>

Random number seed

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.SimulatedAnnealing

-A <float>

Start temperature

-U <integer>

Number of runs

-D <float>

Delta temperature

-R <seed>

Random number seed

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

23



• weka.classifiers.bayes.net.search.global.TabuSearch

-L <integer>

Tabu list length

-U <integer>

Number of runs

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-P <nr of parents>

Maximum number of parents

-R

Use arc reversal operation.

(default false)

-N

Initial structure is empty (instead of Naive Bayes)

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.global.TAN

-mbc

Applies a Markov Blanket correction to the network structure,

after a network structure is learned. This ensures that all

nodes in the network are part of the Markov blanket of the

classifier node.

-S [LOO-CV|k-Fold-CV|Cumulative-CV]

Score type (LOO-CV,k-Fold-CV,Cumulative-CV)

-Q

Use probabilistic or 0/1 scoring.

(default probabilistic scoring)

• weka.classifiers.bayes.net.search.fixed.FromFile

-B <BIF File>

Name of file containing network structure in BIF format

• weka.classifiers.bayes.net.search.fixed.NaiveBayes

24



No options.

Overview of options for estimators

• weka.classifiers.bayes.net.estimate.BayesNetEstimator

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.BMAEstimator

-k2

Whether to use K2 prior.

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.MultiNomialBMAEstimator

-k2

Whether to use K2 prior.

-A <alpha>

Initial count (alpha)

• weka.classifiers.bayes.net.estimate.SimpleEstimator

-A <alpha>

Initial count (alpha)

Generating random networks and artificial data sets

You can generate random Bayes nets and data sets using
weka.classifiers.bayes.net.BayesNetGenerator

The options are:

-B

Generate network (instead of instances)

-N <integer>

Nr of nodes

-A <integer>

Nr of arcs

-M <integer>

Nr of instances

-C <integer>

Cardinality of the variables

-S <integer>

Seed for random number generator

-F <file>

The BIF file to obtain the structure from.

25



The network structure is generated by first generating a tree so that we can
ensure that we have a connected graph. If any more arrows are specified they
are randomly added.

8 Inspecting Bayesian networks

You can inspect some of the properties of Bayesian networks that you learned
in the Explorer in text format and also in graphical format.

Bayesian networks in text

Below, you find output typical for a 10 fold cross-validation run in the Weka
Explorer with comments where the output is specific for Bayesian nets.

=== Run information ===

Scheme: weka.classifiers.bayes.BayesNet -D -B iris.xml -Q weka.classifiers.bayes.net.search.local.K2

Options for BayesNet include the class names for the structure learner and for
the distribution estimator.

Relation: iris-weka.filters.unsupervised.attribute.Discretize-B2-M-1.0-Rfirst-last

Instances: 150

Attributes: 5

sepallength

sepalwidth

petallength

petalwidth

class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Bayes Network Classifier

not using ADTree

Indication whether the ADTree algorithm [8] for calculating counts in the data
set was used.

#attributes=5 #classindex=4

This line lists the number of attribute and the number of the class variable for
which the classifier was trained.

Network structure (nodes followed by parents)

sepallength(2): class

sepalwidth(2): class

petallength(2): class sepallength

petalwidth(2): class petallength

class(3):

26



This list specifies the network structure. Each of the variables is followed by a
list of parents, so the petallength variable has parents sepallength and class,
while class has no parents. The number in braces is the cardinality of the
variable. It shows that in the iris dataset there are three class variables. All
other variables are made binary by running it through a discretization filter.

LogScore Bayes: -374.9942769685747

LogScore BDeu: -351.85811477631626

LogScore MDL: -416.86897021246466

LogScore ENTROPY: -366.76261727150217

LogScore AIC: -386.76261727150217

These lines list the logarithmic score of the network structure for various meth-
ods of scoring.

If a BIF file was specified, the following two lines will be produced (if no
such file was specified, no information is printed).

Missing: 0 Extra: 2 Reversed: 0

Divergence: -0.0719759699700729

In this case the network that was learned was compared with a file iris.xml
which contained the naive Bayes network structure. The number after “Missing”
is the number of arcs that was in the network in file that is not recovered by
the structure learner. Note that a reversed arc is not counted as missing. The
number after “Extra” is the number of arcs in the learned network that are not
in the network on file. The number of reversed arcs is listed as well.

Finally, the divergence between the network distribution on file and the one
learned is reported. This number is calculated by enumerating all possible in-
stantiations of all variables, so it may take some time to calculate the divergence
for large networks.

The remainder of the output is standard output for all classifiers.

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 116 77.3333 %

Incorrectly Classified Instances 34 22.6667 %

etc...

Bayesian networks in GUI

To show the graphical structure, right click the appropriate BayesNet in result
list of the Explorer. A menu pops up, in which you select “Visualize graph”.

27



The Bayes network is automatically layed out and drawn thanks to a graph
drawing algorithm implemented by Ashraf Kibriya.

When you hover the mouse over a node, the node lights up and all its children
are highlighted as well, so that it is easy to identify the relation between nodes
in crowded graphs.

Saving Bayes nets You can save the Bayes network to file in the graph
visualizer. You have the choice to save as XML BIF format or as dot format.
Select the floppy button and a file save dialog pops up that allows you to select
the file name and file format.

Zoom The graph visualizer has two buttons to zoom in and out. Also, the
exact zoom desired can be entered in the zoom percentage entry. Hit enter to
redraw at the desired zoom level.

28



Graph drawing options Hit the ’extra controls’ button to show extra
options that control the graph layout settings.

The Layout Type determines the algorithm applied to place the nodes.
The Layout Method determines in which direction nodes are considered.
The Edge Concentration toggle allows edges to be partially merged.
The Custom Node Size can be used to override the automatically deter-

mined node size.
When you click a node in the Bayesian net, a window with the probability

table of the node clicked pops up. The left side shows the parent attributes and
lists the values of the parents, the right side shows the probability of the node
clicked conditioned on the values of the parents listed on the left.

So, the graph visualizer allows you to inspect both network structure and
probability tables.

9 Bayesian nets in the experimenter

Bayesian networks generate extra measures that can be examined in the exper-
imenter. The experimenter can then be used to calculate mean and variance for
those measures.

The following metrics are generated:

29



• measureExtraArcs: extra arcs compared to reference network. The net-
work must be provided as BIFFile to the BayesNet class. If no such
network is provided, this value is zero.

• measureMissingArcs: missing arcs compared to reference network or zero
if not provided.

• measureReversedArcs: reversed arcs compared to reference network or
zero if not provided.

• measureDivergence: divergence of network learned compared to reference
network or zero if not provided.

• measureBayesScore: log of the K2 score of the network structure.

• measureBDeuScore: log of the BDeu score of the network structure.

• measureMDLScore: log of the MDL score.

• measureAICScore: log of the AIC score.

• measureEntropyScore:log of the entropy.

10 Adding your own Bayesian network learners

You can add your own structure learners and estimators.

Adding a new structure learner

Here is the quick guide for adding a structure learner:

1. Create a class that derives from weka.classifiers.bayes.net.search.SearchAlgorithm.
If your searcher is score based, conditional independence based or cross-
validation based, you probably want to derive from ScoreSearchAlgorithm,
CISearchAlgorithm or CVSearchAlgorithm instead of deriving from SearchAlgorithm

directly. Let’s say it is called
weka.classifiers.bayes.net.search.local.MySearcher derived from
ScoreSearchAlgorithm.

2. Implement the method
public void buildStructure(BayesNet bayesNet, Instances instances).
Essentially, you are responsible for setting the parent sets in bayesNet.
You can access the parentsets using bayesNet.getParentSet(iAttribute)
where iAttribute is the number of the node/variable.

To add a parent iParent to node iAttribute, use
bayesNet.getParentSet(iAttribute).AddParent(iParent, instances)

where instances need to be passed for the parent set to derive properties
of the attribute.

Alternatively, implement public void search(BayesNet bayesNet, Instances

instances). The implementation of buildStructure in the base class.
This method is called by the SearchAlgorithm will call search after ini-
tializing parent sets and if the initAsNaiveBase flag is set, it will start

30



with a naive Bayes network structure. After calling search in your cus-
tom class, it will add arrows if the markovBlanketClassifier flag is set
to ensure all attributes are in the Markov blanket of the class node.

3. If the structure learner has options that are not default options, you
want to implement public Enumeration listOptions(), public void

setOptions(String[] options), public String[] getOptions() and
the get and set methods for the properties you want to be able to set.

NB 1. do not use the -E option since that is reserved for the BayesNet

class to distinguish the extra options for the SearchAlgorithm class and
the Estimator class. If the -E option is used, it will not be passed to your
SearchAlgorithm (and probably causes problems in the BayesNet class).

NB 2. make sure to process options of the parent class if any in the
get/setOpions methods.

Adding a new estimator

This is the quick guide for adding a new estimator:

1. Create a class that derives from
weka.classifiers.bayes.net.estimate.BayesNetEstimator. Let’s say
it is called
weka.classifiers.bayes.net.estimate.MyEstimator.

2. Implement the methods
public void initCPTs(BayesNet bayesNet)

public void estimateCPTs(BayesNet bayesNet)

public void updateClassifier(BayesNet bayesNet, Instance instance),
and
public double[] distributionForInstance(BayesNet bayesNet, Instance

instance).

3. If the structure learner has options that are not default options, you
want to implement public Enumeration listOptions(), public void

setOptions(String[] options), public String[] getOptions() and
the get and set methods for the properties you want to be able to set.

NB do not use the -E option since that is reserved for the BayesNet class
to distinguish the extra options for the SearchAlgorithm class and the
Estimator class. If the -E option is used and no extra arguments are
passed to the SearchAlgorithm, the extra options to your Estimator will
be passed to the SearchAlgorithm instead. In short, do not use the -E
option.

11 FAQ

How do I use a data set with continuous variables with the

BayesNet classes?

Use the class weka.filters.unsupervised.attribute.Discretize to discretize
them. From the command line, you can use

31



java weka.filters.unsupervised.attribute.Discretize -B 3 -i infile.arff

-o outfile.arff

where the -B option determines the cardinality of the discretized variables.

How do I use a data set with missing values with the

BayesNet classes?

You would have to delete the entries with missing values or fill in dummy values.

How do I create a random Bayes net structure?

Running from the command line
java weka.classifiers.bayes.net.BayesNetGenerator -B -N 10 -A 9 -C

2

will print a Bayes net with 10 nodes, 9 arcs and binary variables in XML BIF
format to standard output.

How do I create an artificial data set using a random Bayes

nets?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -N 15 -A 20 -C 3

-M 300

will generate a data set in arff format with 300 instance from a random network
with 15 ternary variables and 20 arrows.

How do I create an artificial data set using a Bayes nets I

have on file?

Running
java weka.classifiers.bayes.net.BayesNetGenerator -F alarm.xml -M 1000

will generate a data set with 1000 instances from the network stored in the file
alarm.xml.

How do I save a Bayes net in BIF format?

• GUI: In the Explorer

– learn the network structure,

– right click the relevant run in the result list,

– choose “Visualize graph” in the pop up menu,

– click the floppy button in the Graph Visualizer window.

– a file “save as” dialog pops up that allows you to select the file name
to save to.

• Java: Create a BayesNet and call BayesNet.toXMLBIF03() which returns
the Bayes network in BIF format as a String.

• Command line: use the -g option and redirect the output on stdout
into a file.

32



How do I compare a network I learned with one in BIF

format?

Specify the -B <bif-file> option to BayesNet. Calling toString() will produce
a summary of extra, missing and reversed arrows. Also the divergence between
the network learned and the one on file is reported.

How do I use the network I learned for general inference?

There is no general purpose inference in Weka, but you can export the network as
XML BIF file (see above) and import it in other packages, for example JavaBayes
available under GPL from http://www.cs.cmu.edu/˜ javabayes.

12 Future development

If you would like to add to the current Bayes network facilities in Weka, you
might consider one of the following possibilities.

• Implement more search algorithms, in particular,

– general purpose search algorithms (such as an improved implemen-
tation of genetic search).

– structure search based on equivalent model classes.

– implement those algorithms both for local and global metric based
search algorithms.

– implement more conditional independence based search algorithms.

• Implement score metrics that can handle sparse instances in order to allow
for processing large datasets.

• Implement traditional conditional independence tests for conditional in-
dependence based structure learning algorithms.

• Currently, all search algorithms assume that all variables are discrete.
Search algorithms that can handle continuous variables would be interest-
ing.

• A limitation of the current classes is that they assume that there are no
missing values. This limitation can be undone by implementing score
metrics that can handle missing values. The classes used for estimating
the conditional probabilities need to be updated as well.

• Only leave-one-out, k-fold and cumulative cross-validation are implemented.
These implementations can be made more efficient and other cross-validation
methods can be implemented, such as Monte Carlo cross-validation and
bootstrap cross validation.

• Implement methods that can handle incremental extensions of the data
set for updating network structures.

And for the more ambitious people, there are the following challenges.

33



• A GUI for manipulating Bayesian network to allow user intervention for
adding and deleting arcs and updating the probability tables.

• General purpose inference algorithms built into the GUI to allow user
defined queries.

• Allow learning of other graphical models, such as chain graphs, undirected
graphs and variants of causal graphs.

• Allow learning of networks with latent variables.

• Allow learning of dynamic Bayesian networks so that time series data can
be handled.

References

[1] R.R. Bouckaert. Bayesian Belief Networks: from Construction to Inference.
Ph.D. thesis, University of Utrecht, 1995.

[2] W.L. Buntine. A guide to the literature on learning probabilistic networks
from data. IEEE Transactions on Knowledge and Data Engineering, 8:195–
210, 1996.

[3] J. Cheng, R. Greiner. Comparing bayesian network classifiers. Proceedings
UAI, 101–107, 1999.

[4] C.K. Chow, C.N.Liu. Approximating discrete probability distributions with
dependence trees. IEEE Trans. on Info. Theory, IT-14: 426–467, 1968.

[5] G. Cooper, E. Herskovits. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9: 309–347, 1992.

[6] N. Friedman, D. Geiger, M. Goldszmidt. Bayesian Network Classifiers. Ma-
chine Learning, 29: 131–163, 1997.

[7] D. Heckerman, D. Geiger, D. M. Chickering. Learning Bayesian networks:
the combination of knowledge and statistical data. Machine Learining, 20(3):
197–243, 1995.

[8] Moore, A. and Lee, M.S. Cached Sufficient Statistics for Efficient Machine
Learning with Large Datasets, JAIR, Volume 8, pages 67-91, 1998.

[9] Verma, T. and Pearl, J.: An algorithm for deciding if a set of observed
independencies has a causal explanation. Proc. of the Eighth Conference on
Uncertainty in Artificial Intelligence, 323-330, 1992.

[10] I.H. Witten, E. Frank. Data Mining: Practical machine learning tools and
techniques. 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

34


